Beavers on the Landscape: Using Tribal Knowledge and Science to Restore Streams and Floodplains

Tom Elliott and David Blodgett III, Yakama Nation Wildlife Program

Columbia Gorge Fisheries and Watershed Science Conference, April 17 2018

Project Goals

- Restore hydrological connection between channel and floodplain-inundation frequency and duration
- Increase area and quality of wetland and riparian habitatponding, complex habitat mosaic, meadows
- Increase beaver population in headwater streams
- Increase water quality and, potentially, quantity locally and downstream
- Develop low-cost restoration methods for smaller streams and meadows

Benefits of Beaver Dams-Habitat

- Restore hydrological connection between channel and floodplain-inundation frequency and duration
- Increase area and quality of wetland and riparian habitatponding, complex habitat mosaic, meadows
- Increase beaver population in headwater streams
- In large rivers, increase side channel habitat quality and diversity

Benefits of Beaver Dams-(Eco)Hydrology

- Reduce flood peaks by holding water in ponds and spreading onto floodplain
- Increase groundwater storage, raise water table supporting higher plant productivity (ET)
- Improve water qualitysediment, thermal complexity, contaminants
- Potentially increase summer low flows-still no high quality studies on this question

Tribal Knowledge-Values and Ecosystem Function

- Elders and other tribal members remember more dams and beavers on the landscape
- References to specific locals: "Beavers used to run Toppenish Creek", beavers along Dry Creek before overgrazing
- Cultural plants in meadows being lost, perhaps because of reduced beaver dams
- Guide us in what to do (bring back beavers) and where

Scientific Support-Modelling, Assessments, Monitoring

- BRAT (Beaver Restoration Assessment Tool)
- Mapping of beaver dams
- Meadow assessment in 2011
- Meadow Vulnerability Assessment in 2018
- Adaptive approach-need to monitor in cost-effective manner

Collectively, this is the BRAT MacFarlane et al 2018

Implementation

- Using Tribal knowledge and science assess general locations-Medicine Valley, Dry Creek, Upper Klickitat, etc
- Select sites using input from models, assessment, and staff knowledge-preference for focusing on watersheds
- Choose areas where restoration can be efficient and sustainable: low grazing pressure, suitable site conditions...
- Implement and monitor. Pre-monitor where possible.

SPATIAL ESTIMATES OF MEASUREABLE

FLOW INCREASE

- Upstream Beaver Dam Storage Volume of baseflow over 30 days
- Relative to base flow
- Largest changes in headwater streams with high capacity
- Spatial differentiation on a reach-by reach basis of where beaver dams might make a *measurable* hydrologic difference

From Hafen (2017)

MacFarlane et al 2018

Categories of Beaver Restoration Approaches

- Passive actions that protect beaver
 - Moratorium
 - Increased regulation/lower limits
 - Grazing deferment
- Actively transplant beavers into areas with few or no beaver but high potential
- Active habitat manipulation to mimic beaver activity
 - Beaver Dam Analogs
 - Bank attached structures
 - Choke Structures, etc.

Active Translocation

- Capture and "Hard" Release
 - Often "nuisance beavers" of the ages 1-2 years old
- Capture, Hold, and "Soft" Release
 - Often mature pairs and young
- Prepare site (BDAs) then begin translocation
 - Sites that have some limiting factors (e.g., lack of pools) but high potential
 - Example: Proposed South Fork Simcoe Creek Project

Proposed Projects for 2018-19

- Restore 2-3 sites in 2018
 - Bear Creek
 - South Fork Simcoe Creek
 - South Fork Dry Creek
- Funding is through the NRCS' Resource Conservation Partners Program (RCCP)

South Fork Simcoe Creek Google Earth South Fork Dry Creek Historic dam Google Earth

Beaver Oil Gland Secretions

Female: Viscosity is more runny Color is creamy tan Smells like bleu cheese

Males: Viscosity is more thick Color is caramel brown Smells like oil/diesel

Beaver Dam Analogues

Official Use Only: Notes on Sit	e Use	5'20.0"
	Yakima Beaver Project	10/20
ease Site Score Card #	Date	Observer_JB/YM
C	eK WE't Subwater	shed
ID (Creek)	1556 5117290	2546 ELLV.
S Coordinates-UTM (NAD 83) (0)	IN CIDE DIN TE	BEAUFOUS HAVE SUPECHANI
cation Description FOU FUI	PMO SACHE POND.	BEAVER(SI HAVE SIDE CHANI
ease circle answers, then fill in the poin	WWOY DEBRIS IN C	HANNELS.
1. Stream Gradient of the don	ned habitat unit 1.7-9% 0.≥9%	4 DOES NITT CHEW OF
5. 53% 3.4-6%	1.7-9% 0.29%	MAPLE THAT IS PLENTIPUL
2. Stream Flow	# Houndashla	BESIDE PUD CACHE PUND.
5 1. Garden hose 5. Fi		BESIDE FOOD CACHE PORTS.
3. Do you predict there will b	e year-round stream flow?	LARGE ALDER FELLED
3. Yes -5. No 0. U	nsure	THEN CUT IN HALF
4. Average Stream Depth	ture high boots of Overs	UNIST AND LEFT LYING
1. Over sneaker 5. 0	wer knee-high boots -3. Over v	1000
5. Habitat Unit Size (stream I	ength) (the stream	1. Small isolated pocket
6. Woody Food a. 3. Aspen, Cottonwood	j, Willow 2. Alder	1. Other hardwoods
b. 3. Within 10 meters	Z. Vilami oo maca	1. Within 100 meters
c. 3. Large amount (thou	usands of stems) 2. Some	(hundreds of stems) 1. Little (dozens)
45 Woody food score =	multiply axbxc	
7. Herbaceous Food 3. Grass/Forbs Prese	nt 0. No Grass/Forbs Present	
8. Floodplain Width	0. Narrow V Chi	annel
5. Adjacent floodplain		
Dominant Stream Substra Sit/Clay/Mud 2	ate 1 Gravel 0. Cobbl	e -1. Boulders -3. Bedrock
	TOURS CO. C.	Fixed year is mostly sand fort
10. Historic Beaver use	sent 3. Some old indicati	ons 0. No indication of previous occupancy
5. Old structures pre		
5 11. Lodge and dam building	ameter woody vegetation avail.	-10. No building material present
12 Are there any roads, cu	lverts, or other damage situati	ons that may result from flooding? (If yes, please
expound on below. i.e.	, now far away is a curverty	
	No	
Culverts_ o	me poor In	
The are	2 his call	m silu chennel (c5') Grd a
- releval	On hiera cherity	
83		(-10)

