A Likelihood Model for Incorporating Tag Loss Into the Inference of Abundance from Mark-Recapture Data Saang-Yoon Hyun and Peter F. Galbreath

Columbia River Inter-Tribal Fish Commission 729 NE Oregon, Suite 200 Portland OR 97232

Acknowledgements

• Jens Lovtang - Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO)

 Brett Hodgson, Richard Stocking, Mike Gauvin - Oregon Department of Fish and Wildlife (ODFW)

Megan Hill - Portland General Electric (PGE)

Pacific Coastal Salmon Recovery Fund (PCSRF) Project No. 2007-5-02 - "Enumeration of Kokanee Salmon Escapement into the Metolius River"

Introduction

 Spawning abundance (escapement) of anadromous fish populations is a metric of critical importance

to monitor population trends

 to determine if escapement goals of fisheries management programs are being met

• Direct and indirect methods to estimate abundance:

- counts fish ladders, weirs/traps, sonars, counting towers, etc. (total count, or sample + expansion)
- redd counts (walking or aerial) + expansion
- mark-recapture

Mark-Recapture - Petersen estimators:

$$\hat{N} = \frac{(M+1)(C+1)}{(R+1)} - 1$$

$$N_{ar}(\hat{N}) = \frac{(M+1)(C+1)(M-R)(C-R)}{(R+1)^2(R+2)}$$

N = abundance estimate

M = number of tagged/marked fish

C = number of captured fish

R = number of (re)captured fish with a tag/mark

Seber, G. A. F. 1973. The estimation of animal abundance and related parameters. Griffin, London, Great Britain.

Mark-Recapture - Petersen estimators:

Assumptions:

- population is closed (no recruitment)
- tagging and recapture are non-overlapping events
- random sampling (equal probability) for tagging, and for (re)capture
- tagging does not affect survival nor catchability
- tags are not lost prior to recapture

 Conditions generally applicable for estimation of spawning escapement - fish can be sampled and marked during migration, and recaptured (resighted) during spawning ground surveys

• EXCEPT tag loss.

Tag Loss

 A commonly used tag is plastic T-bar anchor tag (e.g., Floy tag)

 Field studies show that tag loss can be substantial among salmonids

And, if tags are lost:

$$\hat{N} = \frac{(M+1)(C+1)}{(R+1)} - 1$$

• the value of M will be greater than the actual number of marked fish susceptible of being recaptured (M^{actual})

• and, the \hat{N} will be biased upwards

 Therefore, need to estimate rate of tag loss (q) and correct M to eliminate the bias

How to Estimate Rate of Tag Loss (q)?

 Perform Mark-Recapture study with doubletagged fish

- Estimate tag loss based on the proportion of fish which retain both (D_2) or only one tag (D_1)
- Double-tagging can be conducted as part of a single tagging mark-recapture study, or separately (using similar tags, under similar conditions)
- Alternative double-tagging designs:
 - <u>Case 1</u>: one non-permanent tag and one permanent tag or mark (e.g., fin clip, opercule punch)
 - <u>Case 2</u>: both tags are non-permanent (typically, two of the same tag type)

Double-Tagging to Estimate Tag Loss (q) If Case 1 (2nd tag is permanent):

$$\hat{q} = \frac{D_1}{D_2 + D_1}$$

If Case 2 (2 identical non-permanent tags):

$$\hat{q} = \frac{D_1}{2D_2 + D_1}$$

Gulland, J.A. 1963. On the analysis of double-tagging experiments. Int. Comm. Northwest Atl. Fish. Spec. Publ. 4: 228-229.

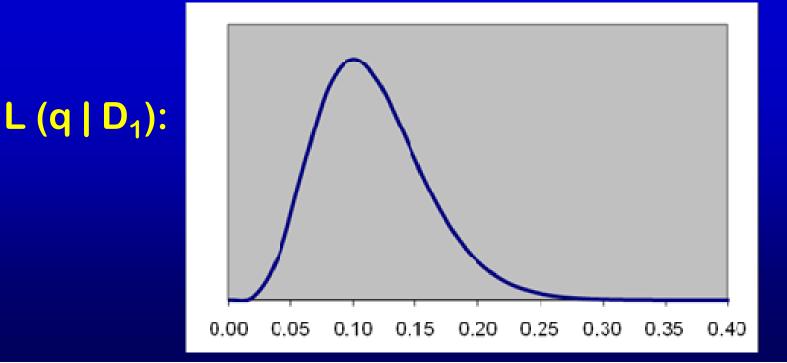
Then, use q to correct for tag loss:

$$M^{astual} = M \times (1 - q)$$

Variance of **q**

• HOWEVER, this correction of M does not incorporate the uncertainty of \hat{q}

• For a given rate of tag loss, D_1 is a discrete random variable with a binomial probability distribution (e.g., Case 1 where q = 10%, and


 $D = D_2 + D_1 = 50$

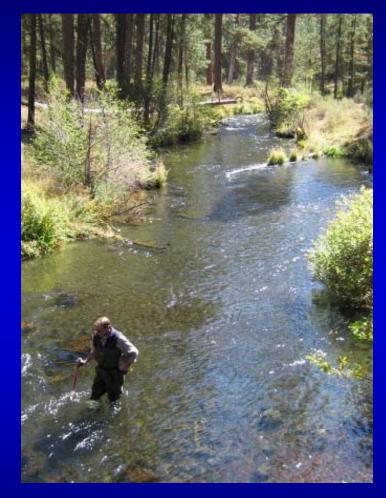
P (D₁ | q):

Likelihood Distribution of q

• Similarly, for a given set of observed values for D_1 and D_2 (as obtained in a mark-recapture study), tag loss (q) is a continuous parameter with a binomial likelihood function

(e.g., Case 1 where $D_1 = 5$ and $D_2 = 45$, D = 50)

Metolius River Kokanee


 We participated with CTWSRO, ODFW and PGE in a 2007 mark-recapture study of Lake Billy Chinook kokanee

 Correction for tag loss in previous studies assumed to be 25% (Smith et al. 1978 – Rogue River spring Chinook)

 The 2007 study included double-tagging using Floy tags of alternative colors (Case 2), to obtain a Metolius kokanee-specific estimate of q

2007 Kokanee Mark-Recapture Study						
Double-tag	<u>Single-tag</u>	<u>Total</u>				
$M_{\rm D} = 491$	$M_{s} = 2,807$	M = 3,298				
$D_1 = 21$	S = 218	R = 277				
$D_2 = 30$		C = 11,444				

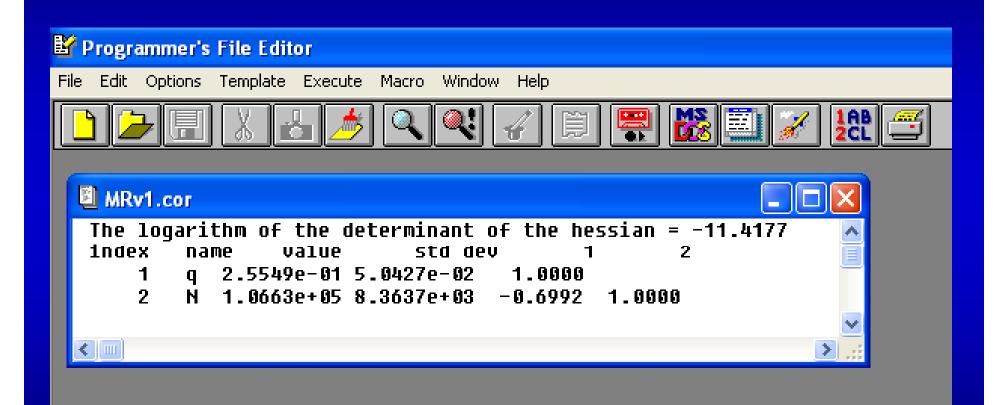
Case 2:
$$\hat{q} = \frac{D_1}{2D_2 + D_1} = \frac{21}{2(30) + 21} = 26\%$$

But, how to calculate uncertainty of \hat{q} ? And, how to incorporate this uncertainty into the Petersen estimation for abundance (\hat{N})?

Binomial-Hypergeometric Likelihood Model

We developed a formal though simple model to incorporate tag loss rate and its uncertainty into a calculation of population abundance – provides a realistic estimate of abundance and its uncertainty

Two-step model framework:


1. binomial likelihood model to estimate rate of tag loss (q) and uncertainty – S.E.(q)

2. hypergeometric likelihood model to estimate abundance (N) and overall uncertainty – S.E.(N)

Binomial-Hypergeometric Likelihood Model Data Input File

🖲 MRdata.txt *	
#Binomial-Hypergeometric Likelihood Model	^
# Part1. Double-Tagging Recapture data for estimating tag loss rate #	
#D1: number of recaptured double-tagged fish retaining one tag	
21	
#	
#D2: number of recaptured double-tagged fish retaining two tags	
30	
# # # # # # # # # # # # # # # # # # #	
# # Part 2. Mark-Recapture data for single-tagged and double-tagged fish, used for estimating abundanc	c 0
# rait 2. Mark-Necapture data for single-tagged and double-tagged fish, used for estimating abundant	-e
#M(S): number of fish initially single-tagged and released	
2807	
#	
#M(D): number of fish initially double-tagged and released	
491	
$\frac{1}{2}$	
#C: total number of (re)captured fish (includes tagged and untagged fish)	
11444	
# #R: total number of recaptured fish with tag(s) - single-tagged + double-tagged fish	
277	_
	×
	2

Binomial-Hypergeometric Likelihood Model Data Output File

Comparison of Estimates for 2007 Metolius River Kokanee Mark-Recapture Data

	đ	Std. Dev.	<u>N</u>	<u>95% C.I.</u>
Petersen Estimators	n/a	n/a	135,816	11.3% of N
(assumes no tag loss)				
Detenson Fatimentons	05.00/		405 005	44 40/ of N
Petersen Estimators (corrected for q)	25.9%	n/a	105,885	11.1% of N
Likelihood Model	25.6%	5.90%	106,630	15.4% of N
(corrected for q and Var(q))	(C.	.I. = 39% of	q)	

Effect of Tag Loss

Effect of tag loss rate on C.I. of N (1.96 * Std. Dev.), we tested alternative values for D₁ and D₂; D = 51, M = 3,298 and C = 11,444 constant, and R recalculated to keep N \approx 107,000.

Binomial-Hypergeometric Likelihood Model

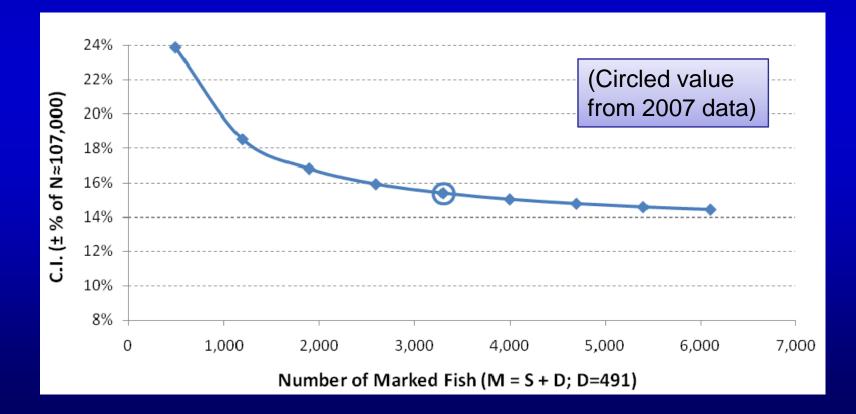
Model is available to the public at: "http://www.critfc.org/tech/08-07report.html" – zip file with executable files for the calculation program, a data input file and a tutorial

Caveat: the model requires the assumption that no double-tagged fish lose both tags ($D_0 = 0$)

- cannot know D₀
- assumption acceptable if q is relatively low:

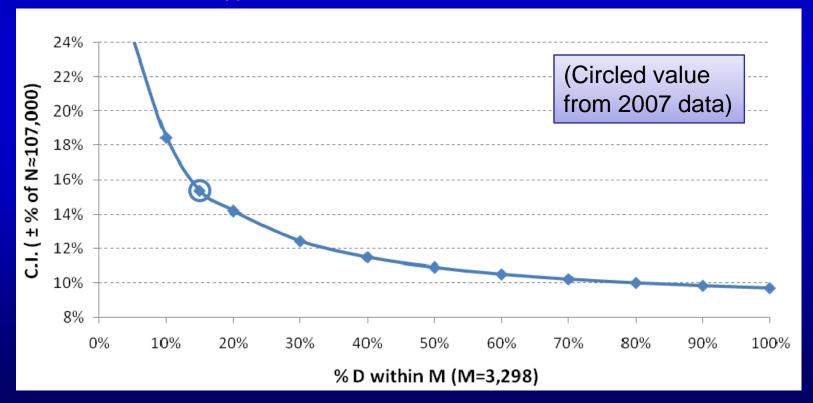
 $D_0 = q^2 * D = very small$

 <u>but</u>, as q increases, the model's estimate of N will be biased high, and variance biased low

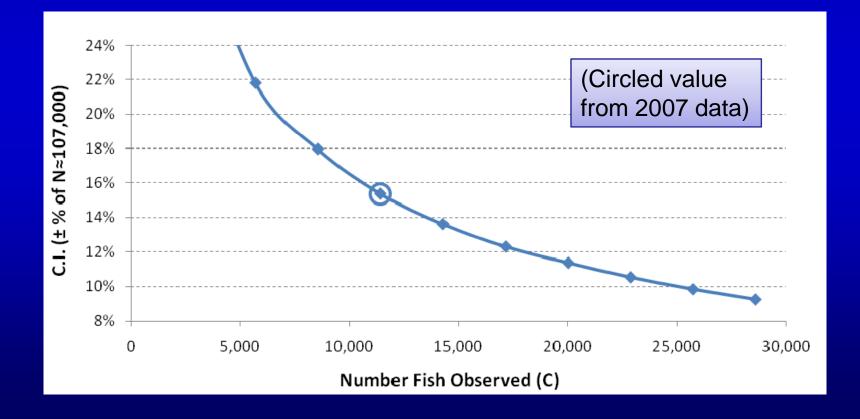

Binomial-Hypergeometric Likelihood Model

 The model also has utility for optimizing field protocols:

- Obtain estimated and/or empirical mark-recapture data, and on the effort (primarily labor) required for the marking and recapture activities
- Test alternative scenarios with model
- Perform a cost-benefit analysis choose a scenario which provides the "best" balance between precision of the abundance estimate and cost to perform the study
- We tested 2007 protocols with 2007 data:


Effect of Change in M_s

Effect of alternative values for M_s on C.I. of N - values for M_D = 491, D_1 = 21, D_2 = 30, C = 11,444 and $\hat{N} \approx 107,000$ remained constant.


Effect of Change in D

Effect of alternative values for the proportion of double-tagged fish (D) on the C.I. of \hat{N} - values of M = S + D = 3,298 and C = 11,444 constant, and D1, D2, S_R and R changed proportionately.

Effect of Change in C

Effect of change in C (survey effort) – values of M = 3,298, and $\hat{N} \approx 107,000$ remained constant, and D_1 , D_2 , R changed proportionately with C.

Recommendations for Metolius Kokanee Mark-Recapture Protocol

 Cost of 2007 Marking and (Re)Capture effort translated into person-days of work

 We recommended 3X increase in the proportion of double-tagged fish (D) and reduction (of C) from 3 to 2 spawning ground surveys

• Result would have been a decrease in C.I. of abundance (\hat{N}) from 15.4% to 11.7% , and a savings of 20% in labor

Binomial-Hypergeometric Likelihood Model Version 2

Project in 2009 to improve functionality and form of the model:

1. Modify to accept D_1 and D_2 input data for both Case I and Case 2 designs, and to accept estimated values for q and Var(q) from previous studies

2. Improve "user-friendliness" and "userfoolproofness" - adapt model to internet webbased interface, and provide input and output data within same file

www.critfc.org/tech/08-07report.html galp@critfc.org hyus@critfc.org

