A Likelihood Model for Incorporating Tag Loss Into the Inference of Abundance from Mark-Recapture Data

 Saang-Yoon Hyun and Peter F. Galbreath

Columbia River Inter-Tribal Fish Commission 729 NE Oregon, Suite 200 Portland OR 97232

Acknowledgements

- Jens Lovtang - Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO)
- Brett Hodgson, Richard Stocking, Mike Gauvin - Oregon Department of Fish and Wildlife (ODFW)
- Megan Hill - Portland General Electric (PGE)

Pacific Coastal Salmon Recovery Fund (PCSRF)
Project No. 2007-5-02 - "Enumeration of Kokanee Salmon Escapement into the Metolius River"

Introduction

- Spawning abundance (escapement) of anadromous fish populations is a metric of critical importance
- to monitor population trends
- to determine if escapement goals of fisheries management programs are being met
- Direct and indirect methods to estimate abundance:
- counts - fish ladders, weirs/traps, sonars, counting towers, etc. (total count, or sample + expansion)
- redd counts (walking or aerial) + expansion
- mark-recapture

Mark-Recapture - Petersen estimators:

$$
\hat{N}=\frac{(M+1)(C+1)}{(R+1)}-1
$$

$$
\underset{\operatorname{Aar}(N)}{ }=\frac{(M+1)(C+1)(M-R)(C-R)}{(R+1)^{2}(R+2)}
$$

$\hat{N}=$ abundance estimate
M = number of tagged/marked fish
C = number of captured fish
$R=$ number of (re)captured fish with a tag/mark
Seber, G. A. F. 1973. The estimation of animal abundance and related parameters. Griffin, London, Great Britain.

Mark-Recapture - Petersen estimators:

- Assumptions:
- population is closed (no recruitment)
- tagging and recapture are non-overlapping events
- random sampling (equal probability) for tagging, and for (re)capture
- tagging does not affect survival nor catchability
- tags are not lost prior to recapture
- Conditions generally applicable for estimation of spawning escapement - fish can be sampled and marked during migration, and recaptured (resighted) during spawning ground surveys
- EXCEPT tag loss.

Tag Loss

- A commonly used tag is plastic T-bar anchor tag (e.g., Floy tag)
- Field studies show that tag loss can be substantial among salmonids
- And, if tags are lost:

$$
\hat{N}=\frac{(M+1)(C+1)}{(R+1)}-1
$$

- the value of M will be greater than the actual number of marked fish susceptible of being recaptured (Mactual)
- and, the \hat{N} will be biased upwards
- Therefore, need to estimate rate of tag loss (q) and correct M to eliminate the bias

How to Estimate Rate of Tag Loss (q)?

- Perform Mark-Recapture study with doubletagged fish
- Estimate tag loss based on the proportion of fish which retain both $\left(D_{2}\right)$ or only one tag $\left(D_{1}\right)$
- Double-tagging can be conducted as part of a single tagging mark-recapture study, or separately (using similar tags, under similar conditions)
- Alternative double-tagging designs:
- Case 1: one non-permanent tag and one permanent tag or mark (e.g., fin clip, opercule punch)
- Case 2: both tags are non-permanent (typically, two of the same tag type)

Double-Tagging to Estimate Tag Loss (q)

If Case 1 ($2^{\text {nd }}$ tag is permanent):

$$
\hat{q}=\frac{D_{1}}{D_{2}+D_{1}}
$$

If Case 2 (2 identical non-permanent tags):

$$
q=\frac{D_{1}}{2 D_{2}+D_{1}}
$$

Gulland, J.A. 1963. On the analysis of double-tagging experiments. Int. Comm. Northwest Atl. Fish. Spec. Publ. 4: 228-229.

Then, use q to correct for tag loss:

$$
M^{a c t u a l}=M \times(1-q)
$$

Variance of \hat{q}

- HOWEVER, this correction of M does not incorporate the uncertainty of $\hat{\mathbf{q}}$
- For a given rate of tag loss, D_{1} is a discrete random variable with a binomial probability distribution (e.g., Case 1 where $q=10 \%$, and
$D=D_{2}+D_{1}=50$)
$P\left(D_{1} \mid q\right):$

Likelihood Distribution of q

- Similarly, for a given set of observed values for D_{1} and D_{2} (as obtained in a mark-recapture study), tag loss (q) is a continuous parameter with a binomial likelihood function (e.g., Case 1 where $D_{1}=5$ and $D_{2}=45, D=50$)

$$
L\left(q \mid D_{1}\right):
$$

Metolius River Kokanee

- We participated with CTWSRO, ODFW and PGE in a 2007 mark-recapture study of Lake Billy Chinook kokanee
- Correction for tag loss in previous studies assumed to be 25\% (Smith et al. 1978 - Rogue River spring Chinook)
- The 2007 study included double-tagging using Floy tags of alternative colors (Case 2), to obtain a Metolius kokanee-specific estimate of q

2007 Kokanee Mark-Recapture Study

Double-tag
$M_{D}=491$

$$
M_{S}=2,807
$$

$$
M=3,298
$$

$D_{1}=21$

$$
S=218 \quad R=277
$$

$D_{2}=30$

$$
C=11,444
$$

Case 2: $\hat{q}=\frac{D_{1}}{2 D_{2}+D_{1}}=\frac{21}{2(30)+21}=26 \%$
But, how to calculate uncertainty of \hat{q} ?
And, how to incorporate this uncertainty into the Petersen estimation for abundance (\hat{N})?

Binomial-Hypergeometric Likelihood Model

We developed a formal though simple model to incorporate tag loss rate and its uncertainty into a calculation of population abundance provides a realistic estimate of abundance and its uncertainty

Two-step model framework:

1. binomial likelihood model to estimate rate of tag loss (q) and uncertainty - S.E.(q)
2. hypergeometric likelihood model to estimate abundance (N) and overall uncertainty - S.E.(N)

Binomial-Hypergeometric Likelihood Model Data Input File

```
[|
#Binomial-Hypergeometric Likelihood Model
#
# Part1. Double-Tagging Recapture data for estimating tag loss rate
#
#D1: number of recaptured double-tagged fish retaining one tag
21
#
#D2: number of recaptured double-tagged fish retaining two tags
30
#
#
# Part 2. Mark-Recapture data for single-tagged and double-tagged fish, used for estimating abundance
##(S): number of fish initially single-tagged and released
2807
#
#M(D): number of fish initially double-tagged and released
491
#
#C: total number of (re)captured fish (includes tagged and untagged fish)
11444
#
#R: total number of recaptured fish with tag(s) - single-tagged + double-tagged fish
277
```


Binomial－Hypergeometric Likelihood Model Data Output File

脣 Programmer＇s File Editor

3） 3^{3}	閑成Q	

Comparison of Estimates for 2007 Metolius River Kokanee Mark-Recapture Data

Petersen Estimators (assumes no tag loss)	$\begin{gathered} \underline{q} \\ \text { n/a } \end{gathered}$	Std. Dev. n/a	$\begin{gathered} \underline{\mathrm{N}} \\ 135,816 \end{gathered}$	$\begin{gathered} \text { 95\% C.I. } \\ \text { 11.3\% of N } \end{gathered}$
Petersen Estimators (corrected for q)	25.9\%	n/a	105,885	11.1\% of N
Likelihood Model (corrected for q and $\operatorname{Var}(q)$)	25.6% (C	$\begin{gathered} 5.90 \% \\ =39 \% \text { of } \end{gathered}$	$106,630$	$15.4 \% \text { of } N$

Effect of Tag Loss

Effect of tag loss rate on C.I. of N (1.96 * Std. Dev.), we tested alternative values for D_{1} and $D_{2} ; D=51, M=3,298$ and $C=11,444$ constant, and R recalculated to keep $N \approx 107,000$.

Binomial-Hypergeometric Likelihood Model

Model is available to the public at:
"http://www.critfc.org/tech/08-07report.html" zip file with executable files for the calculation program, a data input file and a tutorial

Caveat: the model requires the assumption that no double-tagged fish lose both tags $\left(\mathrm{D}_{0}=0\right)$

- cannot know D_{0}
- assumption acceptable if q is relatively low:

$$
D_{0}=q^{2} * D=\text { very small }
$$

- but, as q increases, the model's estimate of N will be biased high, and variance biased low

Binomial-Hypergeometric Likelihood Model

- The model also has utility for optimizing field protocols:
- Obtain estimated and/or empirical mark-recapture data, and on the effort (primarily labor) required for the marking and recapture activities
- Test alternative scenarios with model
- Perform a cost-benefit analysis - choose a scenario which provides the "best" balance between precision of the abundance estimate and cost to perform the study
- We tested 2007 protocols with 2007 data:

Effect of Change in M_{S}

Effect of alternative values for M_{S} on C .1 . of N values for $M_{D}=491, D_{1}=21, D_{2}=30, C=11,444$ and $\hat{\mathrm{N}} \approx 107,000$ remained constant.

Effect of Change in D

Effect of alternative values for the proportion of double-tagged fish (D) on the C.I. of N - values of $M=S+D=3,298$ and $C=11,444$ constant, and D1, D2, S_{R} and R changed proportionately.

Effect of Change in C

Effect of change in C (survey effort) - values of $M=3,298$, and $N \approx 107,000$ remained constant , and D_{1}, D_{2}, R changed proportionately with C.

Recommendations for Metolius Kokanee Mark-Recapture Protocol

- Cost of 2007 Marking and (Re)Capture effort translated into person-days of work
- We recommended $3 X$ increase in the proportion of double-tagged fish (D) and reduction (of C) from 3 to 2 spawning ground surveys
- Result would have been a decrease in C.I. of abundance ($\hat{\mathrm{N}}$) from 15.4% to 11.7%, and a savings of 20% in labor

Binomial-Hypergeometric Likelihood Model

 Version 2Project in 2009 to improve functionality and form of the model:

1. Modify to accept D_{1} and D_{2} input data for both Case I and Case 2 designs, and to accept estimated values for q and $\operatorname{Var}(q)$ from previous studies
2. Improve "user-friendliness" and "userfoolproofness" - adapt model to internet webbased interface, and provide input and output data within same file

www.critfc.org/tech/08-07report.html galp@critfc.org hyus@critfc.org

