Reversing Channel Incision and Enhancing Steelhead Habitat in Tepee Cr

Will Conley, Hydrologist Yakama Nation Fisheries Program

Salmon Habitat Project ConferenceShelton, WAApril 15, 2009

Outline

Background Design Implementation Results Insights Bed Material Average Gradient Materials Salvage Cost / Acknowledgements Special Features...

Location

- Klickitat River tributary
- Klickitat Lead Entity
- south-central Washington State
- east-slope of Cascade Mountains
- 22 miles due east of Mt. Adams
 within Yakama Nation Reservation

Setting

Forested watershed (3000-4000')

- Basal geology is Grande Ronde basalt (CRB group)
- Hard parent materials and low to moderate relief = very limited bedload supply
- Contributing <u>drainage area of 8.4 square-miles</u>
- Project reach is at 2965' elevation
- Cohesive soils / banks (Aquandic Haploxeralfs)
- Prevailing texture is clay loam

Fisheries Significance

- Habitat for Middle Columbia River steelhead (ESA-"threatened")
- Tepee Creek accounts, on average, for 6.3% of the total observed spawning in the Klickitat subbasin
- Extensive reaches are incised and intermittent. Spawning habitat is marginal and <u>rearing</u> <u>conditions are poor and limiting</u>
- Reach is located within one of the top priority areas of the Klickitat Salmon Recovery Strategy

Problem

Project reach dried-up in 4 out of 5 years preceding project implementation

Limited rearing and spawning habitat

Stranding issues

 Field indicators and hydraulic modeling indicated that project reach was incised 3 to 4 feet within its historic planform

Goals

Restore water table / floodplain storage

Enhance in-channel habitat conditions for rearing steelhead

Restore suitability of valley bottom for medicinal and traditional food plants

Project Team

- Will Conley YN Fisheries Program
 - Project Management Design
 - Construction Oversight
- Mike McAlister, PE Interfluve, Inc
 - Design Construction Oversight

Mike Brunfelt - Interfluve, Inc

- Design - Construction Oversight

Hydrology

- Ungaged (pre-project)
- Peak-flow hydrology is driven by rain-on-snow events
- Base flow (for years when it exists) = 10-12 gpm

■ Q₂ : Q_{base} ~ 1 : 6,200

Recurrence Interval (yrs)	Region 6 USGS Equation Results	
	Discharge (cfs) ^a	Discharge (cfs) ^b
2	112.8	165.2
10	331.4	414.2
25	496.4	585.1
50	643.8	730.5
100	816.9	895.7

^a using 17.4" MAP correlated with HEC-HMS model ^b using 27.6" MAP from nearby RAWS station

Design

Conceptual:

- Import gravels to raise the bed elevation to restore inundation frequency to the pre-disturbance floodplain
- Build "immature" (higher W/D) cross-section and allow stream to adjust

Parameters:

- Design dimensions were modeled iteratively in HEC-RAS
- average slope (0.0093 ft/ft)
- bankfull area = 19.7 ft²
- bankfull top width = 18.4 ft

30% drawings for fit-in-the-field

Plan View

Profile View

Sequencing

Implemented over two field seasons:

Fall 2006

- All riffles roughed-in
- Downstream grade control completed
- All LWD and rock material delivered to site
- Roughly half of the LWD jams completed
- Temporary erosion control measures implemented

Maximum discharge over winter 2006/2007 = 143 cfs

July 2007

- Final grading on pools and riffles
- LWD jams and floodplain LWD completed
- Revegetation and weed control completed
- Fence construction completed
- Access routes rehabilitated

Implementation

- A 140' coarsened riffle (0.03 ft/ft) was constructed at the downstream end of the reach for grade-control
- Ninety-five feet of new channel constructed
- Reconnected 135' of historic channel
- Imported gravel to raise bed elevation (~3') and reconstruct pool/riffle sequences along 1850'
- Overall reach lengthened to 1990'
- 28 LWD jams constructed along channel margins
- Numerous floodplain LWD placements constructed
- Removed 2 culverts and related fill from an abandoned cross-valley road alignment

Downstream Grade Control

140' roughened channel subreach (0.03 ft/ft) to transition to untreated downstream reach

Typical Riffle Fill: Before & After

Gradatior	n Table
Imported	Gravel

Percent	Diameter
Smaller Than	(in)
100	4.0
84	1.6
50 16	0.7

Typical Riffle Fill and LWD: Under Construction

STA 20+90

(IXL Road Crossing – upstream end of project reach)

4/5/07

Culvert outlets backwatered to improve fish passage

Results

- Flow Duration: perennial pools maintained both years since construction
- Groundwater: 2 4' increase in summer water table
- High Flow Access: at bankfull or lower flows to four side channels totaling 835 lineal feet
- Pools: increased from 15 to 23 (65%); greater depths & cover
- Wetlands: ~3100 ft² of emergent wetland created
- Riparian Vegetation: Rapid recovery, particularly of salvaged plant materials
- Spawning: Two steelhead redds observed
- <u>Rearing</u>: 2x 3x increase in juvenile O. mykiss abundance
- <u>Macroinvertebrates</u>: Rapid colonization by multiple species of caddisflies and mayflies

Groundwater

Post-project:

- 2' 4' increase in summer/fall water table
- 1.8' increase in the average annual water table
- Less variability between and amongst wells

Residual Pool Depths

Note: because some pools were under-filled during construction, the median value for residual depths under equilibrium conditions is anticipated to be 2.0' - 2.49' Will Conley, Yakama Nation Fisheries

Steelhead Spawning

A HORAT HAVE

One of two steelhead redds observed in project reach in 2007

Bed Material: Pre-Project

colluvial armor; clasts >40mm mostly sub-angular bi-modal distribution; very high fines content

Bed Material: Sourcing

Crushed vs. Alluvium:

Which is more like the bed material in the stream?

- Bed material in Tepee Creek is mostly sub-angular (<40 mm is somewhat sub-rounded)
- Commercially available alluvium is rounded to well-rounded
- Consider:
 - Ethics of becoming party to floodplain gravel mining
 - Burning additional fossil fuels to haul
 - Project Goals: NOT trying to improve spawning habitat (rearing-limited)

In the case of Tepee Creek, the costs of hauling alluvium from

the Yakima R. floodplain were unjustified

Bed Material: Design

Size distribution should balance: stability - porosity

Gradation Table Imported Gravel		
Percent	Diameter	
Smaller Than	(in)	
84	1.6	
50	0.7	
16	0.2	

 $D_{84} / D_{100} = 0.4$ $D_{84} / D_{16} = 8.0$ $D_{84} / D_{50} = 2.3$

Consider: D₈₄ / D₅₀ = 2.3
 Ambient passage conditions
 Temperature vs dissolved oxygen trade-offs
 D.O. recovers faster than temperature
 Erred on side of too porous, hence lower potential for adverse temperature and stability effects

Bed Material: Delivery

- End-dump directly to stream or stockpile on-site?
 - f (cost, access, disturbance tolerance)
- Sorting in box of truck during hauling
 - Haul gradations separately and mix on site if necessary
- Inspect material before and during hauling
 - Spend as much time as necessary at source to get distribution right

Bed Material: Observations

- Soil plugs in subgrade of riffle crests:
 - Do increase residual pool depths
 - Are as-yet untested in live-bed conditions
- Riffle porosity inversely correlated with:
 - Amount of tracking by equipment
 - Ambient moisture conditions at time of construction
- Fish passage through constructed riffles
 - Is comparable to ambient conditions
- Macroinvertebrate response very positive
- Steelhead and resident trout spawning observed
- Dissolved Oxygen
 - Appears to be an issue where known groundwater inputs occur

Flow Through Riffles

Threshold for wetting

STA 13+20*

10/30/08 Surface flow at control ~ 0.56 cfs** 11/4/08 Top-to-bottom surface flow ~ 1.90 cfs**

 * STA 13+20 is one of four controls that has a "plug" of native soil in the subgrade
 ** adult passage and spawning throughout project is comparable to untreated reaches (median spawning flow = 12.6 cfs)

Flow Through Riffles (cont'd) Q < 0.5 cfs

- No subgrade "plug" in either control
- Both stations have comparable cross-sectional fill areas
- STA 2+70 constructed under wetter ambient conditions than 15+80 (i.e. more intrusion of native fines into fill during construction)

The Thing About Average Gradient...

Medium to high flows: OK because energy line and bed slope are more or less parallel

Low flows: energy line is stepped which (in the absence of further treatment) causes headcutting of riffle toes

Implementing Average Gradient

Basically three approaches:

Extend riffle downstream into pool

and / or

Transition slope into head of pool and / or

Harden / armor riffle toe

coarsen bed material

Coarsened toe with transitional slope extending into head of pool

add a log drop (only done in one place)

Native Material Salvage

Expensive (adds equipment time)

Vegetation: sod and shrubsVERY effective

Gravels
 Mostly window-dressing (in Tepee Creek)

Sod salvage and gravel filling

CAT

5/19/08

Salvaged sod and shrubs used along bank

Ineffective areas intentionally left unfilled

encourages recruitment of fines minimizes suitability for weeds hastens colonization by desired hydrophytes

STA 6-170

8/7/07

Weeds

- Two bull thistle (Cirsium vulgare) individuals observed preproject
- Thousands of bull thistle rosettes and scores of stalks in first growing season

Intensive manual pulling in first season (August 2007)
 Virtually no subsequent control required

How Much to "Finish"?

- Build-out pools or leave under-filled?
- Rough-in riffles or finely-grade?
- Trick-out your LWD jams or get primary members
 - placed and secured?
- It's all a matter of \$\$\$\$\$

Materials (delivered; 40.9%)

\$100,013 - rock - LWD 40,500 5 revegetation* and erosion control <u>\$</u> 5,087 - cable, clamps, and anchors \$ 3,354 1,420 - fencing materials <u>\$</u> Construction^{**} (32.7%) \$120,334 Planning, Design, and Oversight (26.4%) \$ 97,226 TOTAL (~\$185/I.f.) \$367,934

*Salvage and placement of sod mats and shrubs is incorporated under "construction" ** hourly contract

Acknowledgements

- WA State Salmon Recovery Funding Board
 - materials and construction

\$188,192

- Bonneville Power Administration (BPA)
 Klickitat Watershed Enhancement Project
 - materials, planning, design, & oversight
- The Yakama Nation (in-kind)
 LWD

\$139,092

\$ 40,650

Ralph Kiona, Watershed Technician

priceless

A Few Nuggets of Restoration Wisdom...

(rolling with the punches)

If your project is within a commercial timber sale boundary, it's a fair bet the loggers don't care as much about what the stream looks like as you.

When the grazing permittee (in clear violation of his permit) throws a salt block out next to the creek you began restoring the previous fall, don't be afraid to take matters into your own hands....

.relocate salt block to the top of the ridge where it belongs....

...and when construction is done...

...put up a fence.

Pay attention to signs

(keeping in mind that the sign, itself, is not always safe)

No matter how far out of harm's way you think you placed your saw, your excavator operator may prove you wrong

For More Information

http://www.ykfp.org/klickitat/KWEP TepeeIXL.htm

